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ABSTRACT 

The chromatin of spermatogenic cells undergoes structural rearrangements upon differentiation from spermatogonia to 

mature spermatozoa. During the haploid stages of mammalian spermatogenesis, histones are gradually replaced first by 

transition proteins and then by protamines. The histone fraction in chromatin of spermatogenic cells is composed of 

testis specific subtypes as well as such histone isoforms, which are also found in somatic tissues. The subtype patterns of 

all histone classes except H4 change in a stage specific manner during mammalian spermatogenesis. This implies that 

control mechanisms exist which regulate the cell type specific expression of the individual histone subtype genes. This 

control may be exerted at the transcriptional level as exemplified by functional studies at the Hit promoter. Regulation 

also may take place posttranslationally as demonstrated by the polyadenylation of part of the mRNA of spermatogenic 

cells. 

RESUME 

Expression des genes des histones pendant la spermatogenese des Mammiferes: aspects 

structuraux et fonctionnels 

La chromatine des cellules spermatog£n6tiques subit des re-arrangements structuraux pendant la differenciation 

progressant de la spermatogonie au spermatozoide mur. Pendant les stades haploi'des de la spermatogenese des 

Mammiferes, les histones sont remplacees graduellement d’abord par des proteines de transition puis par des protamines. 

La fraction des histones dans la chromatine des cellules spermatogenetiques est composee de sous-types specifiques du 

testicule ainsi que d’isoformes des histones qui sont aussi rencontrces dans les tissus somatiques. Les sous-types de toutes 

les classes d’histones sauf H4 changent specifiquement en fonction des etapes de la spermatogenese des Mammiferes. Ceci 

implique qu’il existe un mecanisme de controle, qui regule fexpression specifique a chaque type cellulaire des genes 

individuels de chaque sous-type d’histone. Ce controle peut etre exerce au niveau transcriptionnel comme font montre les 

etudes fonctionnelles sur le promoteur des Hit. La regulation peut aussi etre post-traductionnelle ainsi que le montre la 

polyadenylation d'une partie des ARNm des cellules spermatogenetiques. 

Histones are the basic chromosomal proteins of eukaryotic organisms. The histone protein 
familiy is composed of five protein species which have been classified on the basis of size and 
function. First, five different classes were defined by electrophoretic means and were termed HI, 
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H2A, H2B, H3 and H4 (for reviews, see [93, 95]). Two copies of each of the four histones 
H2A, H2B, H3 and H4 form the nucleosomal core. Therefore, they are summarily described as 
core histones in contrast to the HI class proteins, which interact with the linker DNA connecting 
nucleosomal cores and are termed linker histones. Core and linker histones have been detected in 
nearly all eukaryotes [95]. The yeast Saccharomyces cerevisiae is an exception in having no linker 
histone [18], but its chromatin forms core nucleosomes and shows a subunit pattern with a 
regular spacing [90]. 

Histone protein patterns have been monitored during spermatogenesis in a broad spectrum 
of lower and higher eukaryotes [6, 7, 13, 16, 54, 62, 66, 67, 83, 85, 87]. Our group has 
concentrated on mammalian systems and has studied the structure and expression of somatic and 
testis-specific histone genes from man and mouse [2-4, 31, 32, 34-38]. In this contribution, 
structural and functional features of testicularly expressed histone genes and gene products will  be 
discussed in relation to different stages of spermatogenesis (see Table 1). 

Table 1. — Mammalian spermatogenic histone gene expression. Compilation of histone subtype proteins detectable at 

specific stages of sperm differentiation before replacement by transition proteins and finally by protamines (data 

from rat, mouse and man or from one or two only of these). Asterisks indicate expression data obtained using gene 
probes. 

Histone subtype Cellular stage of histone detection Reference 

Hla-e any stage (predominantly Hla*,Hlc) 

in part replaced by Hit (in pachytene spermatocytes) 

no HI left in late spermatids 

12, 13, 15, 33*, 62, 83, 85 

HI0 spermatogonia* (then decreasing) 42* 

Hit pachytene spermatocytes* 

replacing main type HI (a, c) 
35*, 50*, 59, 60, 67 

H2A any stage (H2A.1>H2A.2), in part replaced by TH2A 

H2A subtype encoded by poly(A)+-mRNA in spermatids* 

12, 67 

71* 

H2A.X spermatogonia* 64*, 67 

H2A.Z spermatogonia (low), slight increase in pachytene spermatocytes 53, 67 

TH2A pachytene spermatocytes* 

partly replacing H2A 
56*. 63, 67, 69 

H2B any stage, major part replaced by TH2B 

specific subtype in spermatids* (extended C-terminus) 
12, 67 

70* 

TH2B pachytene spermatocytes* (and later stages) 12, 57, 58* 

H3 any stage (H3.2>H3.1) 12, 67 

TH3 spermatogonia, absent during later stages 89 

H3.3 any stage until spermatids, predominantly in spermatogonia 9, 67, 91 

H4 any stage 

Hit associated H4* gene transcribed in pachytene spermatocytes 
12, 67, 68 

94* 

Source. 
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OBSERVATIONS AND DISCUSSION 

Testicular histone subtypes 

The HI linker histone family of mammals comprises several variant isoforms. The most 
detailed analysis of the H1 complement has been done in human and murine chromatin in several 
cell and tissue types. In humans, five main type HI histone genes have been described [3] in 
addition to the gene encoding Hlo [31], which is a histone confined to highly differentiated cell 
types, and the highly conserved Hit gene [34], which is only expressed in testicular cells. Hit 
protein sequences are known from man [34], other primates [59], mouse [35], rat [22] and boar 
[21] . The Hit protein is confined to male germ cells and is not a general meiosis specific variant 
[65], As in humans, five different mouse HI proteins (or genes) [3, 33, 62, 88, 89, 97] plus Hlo 
[4] and Hit [35] were described. As yet, only one rat main type HI gene [23, 36], the Hit gene 
[22] and a partial Hl» cDNA sequence [17] have been described. The rat Hit gene and gene 
promoter structures have been intensely studied [49-51] and will  be discussed below. The Hit 
fraction of the overall testicular HI complement amounts to about 25% [78], and somatic type 
isoforms [62] and the Hlo fraction [84, 87] constitute the remaining part of the HI histone moiety 
in testicular chromatin. In pachytene spermatocytes and later stages Hit may comprise a much 
higher fraction [13, 67], 

Core histone isoforms, which are restricted to testicular cells, have been described in several 
species. A pair of testicularly expressed genes consisting of an H2A and an H2B gene was 
described by Huh et al. [55], These genes appear to code for the previously described testicular 
subtypes TH2A and TH2B, respectively [10, 58, 92, 98]. In addition to main type H2A and H2B 
isoforms, two H2A subtypes, which are replication independent, i.e. H2A.Z and H2A.X [53, 
64], have been described. H2A.X is enriched in testicular chromatin, whereas H2A.Z is 
uniformly found in most somatic tissues [53]. A testicular subtype of H3 (TH3) has been isolated 
from rat testis [91]. Its unique amino acid composition (including three cysteine residues) 
indicates structural differences compared with all other known H3 subtypes, but as yet no TH3 
gene has been identified in any mammalian genome. The replication independent H3 subtype 
H3.3 is also expressed during spermatogenesis. For example, H3.3 has been observed in 
spermatid stages of spermiogenesis [69], but it is also present at earlier stages of spermatogenesis 
[67, 91]. H4 is the most conserved of all histone classes. Its 102 amino acid sequence is strictly 
maintained in all mammalian species. This even applies to H4 genes which are differentially 
expressed. For example, the human, rat or mouse Hit genes are located near testicularly 
expressed H4 genes which code for the same H4 amino acid sequences as other H4 genes from 
the same species. 

Organization of mammalian histone gene clusters 

The majority of histone genes in the murine and human genomes is clustered at specific 
chromosomal sites. Except the Hl° gene, all known human HI genes and surrounding core 
histone genes are located on chromosome 6 [3]. A minor portion of core histone genes maps to 
chromosome 1 [46], and the solitary Hlo gene is located on the long arm of chromosome 22 [3]. 
The situation in the murine genome appears to be similar, since a major histone gene cluster 

including the Hit gene has been mapped to chromosome 13 [26, 75], and the murine Hlo gene is 
on chromosome 15 in a region which is syntenic with the region on the human chromosome 22, 
where the human Hlo gene is located [3, 11]. 

The human Hit gene, which is expressed in pachytene spermatocytes (see below) forms 
part of the major gene cluster on chromosome 6, which also contains the other HI genes [3]. 
Thus, the generation of H1 histone patterns, which are characteristic for cells of specific stages of 
spermatogenesis, must depend on a differential regulation of the genes within that major cluster. 
In addition, the expression of the Hl° gene, which appears to be developmentally regulated 
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during differentiation of several cell types [99], must undergo tissue-specific control. It is 
preferentially expressed during early stages of spermatogenesis [42] and in somatic cells it mainly 
appears upon terminal differentiation [99]. 

The genes coding for the testicularly expressed histones TH2A, TH2B and TH3 have not 
yet been mapped to specific chromosomal sites. They also may form part of the major histone 
gene cluster. GRIMES et al. [49] have shown that an H4 gene, which is located near the rat Hit 
gene, is testicularly expressed. It has the same primary structure as other mammalian H4 proteins. 
On the basis of its variant nucleotide sequence and testicular expression, this gene may be termed 
H4t [49, 94]. Its association with the Hit gene, which is located within the major cluster of 
somatically expressed histone genes, implies that it is not a solitary gene. In contrast to the Hit 
gene, expression of this neighbouring H4 (H4t) gene is not confined to spermatogenic cells, but 
its mRNA also has been detected in a rat myeloma cell line. 

Cell type specific histone patterns at different stages of spermatogenesis 

The HI patterns of different somatic cell types or germ cells are not uniform, but vary in 
their HI subtype composition. In several mammalian species, five main type HI protein species 
(termed HIa-Hle) were described [62], In rat testes, the subtypes Hla-Hle can be detected (Hla 
and Hlc predominating) during all stages of spermatogenesis until the primary spermatocyte stage 
[12, 62]. Similarly, the subtypes Hla and Hlc predominate in mouse germ cells until the meiotic 
prophase [62]. Immunocytochemical analysis of murine tubuli seminiferi showed the greatest 
level of reactivity in primary spermatocyte nuclei using antibodies against Hla [79]. 
Developmental studies showed that the first expression of the Hla gene occurs in 7 day old mice 
at a stage when intermediate and B type spermatogonia appear [79], In situ hybridizations with 
human testis detected the mRNA coding for human Hl.l (equals Hla according to [76]) until the 
stage of round spermatids [14, 15]. Thus, the subtype Hla appears to be a major constituent in 
the chromatin of mammalian germ cells [13, 67]. In addition, the subtypes Hlb, c and d 
contribute to the germ cell chromatin [62, 67, 78]. 

The HI subtype Hl° has been described in unfractionated mammalian testis cell 
preparations [83, 85, 86], The predominant expression of the Hl° gene in spermatogonia was 
suggested by promoter studies of GARCIA-IGLESIAS et al. [42], In that work, the Hlo promoter 
was ligated upstream of a B-galactosidase gene and the expression of this construct was monitored 
in transgenic mice. The analysis showed that the promoter was used in several tissues, such as 
specific cell types in kidney, brain and testis. Testicular mRNA synthesis was mostly confined to 

spermatogonia, but immunofluorescence studies with Hlo antibodies indicated expression in 
Sertoli cells, too. Thus, expression of the Hl° gene may be confined to early stages of 
spermatogenesis, but somatic cells in the testis also express the Hlo gene. 

The Hit protein is absent from spermatogonia and is first detected in pachytene 
spermatocytes [35, 60, 69], This has been demonstrated at the protein level in chromatin from 
mouse and rat cells fractionated by elutriation centrifugation [44], After the cloning of the genes 
coding for the human, murine and rat Hit proteins [22, 34, 35], Northern blot and in situ 
hybridization analysis has confirmed these protein data showing that the mRNA is only found in 
pachytene spermatocytes [60] whereas the proteins are preserved in the subsequent stages until 
histone replacement by transition proteins [69], 

The major change in chromatin structure during the meiotic prophase is also evident in the 
H2A/H2B class of histones. The subtypes TH2A and TH2B both become first detectable in 
pachytene spermatocytes of rat and mouse [20, 67, 78, 92], The subtype H2A.X, which, like 
Hlo, is a non replication-dependent histone [72, 96], has been detected in type A spermatogonia 
[64], Expression of a modified H2B protein has been found during mouse spermiogenesis [70]. 
In a cDNA library constructed from spermatid RNA, an H2B cDNA sequence was observed 
which was extremely similar to other mouse H2B gene sequences, but the C-terminus coded for 

Source: MNHN. Paris 
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12 additional amino acids, 7 of which were hydrophobic. Northern blots with RNA from other 
tissues indicated that this transcript was testis-specific [70]. Similarly, a polyadenylated H2A 
mRNA was detected in mouse round spermatids [71]. 

The histone to protamine transition during human spermiogenesis does not result in a 
complete removal of all histones [43, 52], About 15% of the human sperm DNA appears to 
remain associated with core histones, i.e. mainly with H2A (H2A.X and trace amounts of 
H2A.Z), several H2B isotypes, H3.1, H3.3 and highly acetylated H4 [43]. In contrast to these 
remaining core histones, no association of any H1 subtype with mature sperm chromatin has been 
observed. 

The gradual changes of the core and linker histone moieties during the development of male 
germ cells and the changes in chromatin morphology and gene activity suggest a functional role 
for the individual histone subtypes. However, correlations between specific structural features of 
histones and functional differences have not yet been established in any somatic or germ cell 
system. Hl», which appears to be confined to early stages of spermatogenesis, is correlated with 
terminal differentiation in several cell types (for review, see [99]). Its avian countertpart H5 is 
confined to the condensed, transcriptionally inactive nuclei of avian red blood cells [5]. The high 
arginine content [30, 31] of the H5 histone is considered as one of the reasons for its condensing 
capacity. Compared with the other HI subtypes, Hit is also enriched in arginine, but DE LUCIA et 
al. [29] have shown by circular dichroism analysis that Hit has a lower condensing capacity than 
the other HI subtypes. Thus, Hit may even contribute to activating effects in the chromatin of 
developing germ cells rather than repressing nuclear activity. It may thus help to decondense the 
chromatin structure for the specific needs of the meiotic and haploid stages of germ cell 
development. 

Postsynthetic histone modifications 

Posttranslational modifications of histone proteins have been primarily observed at 
spermatid stages of spermatogenic cell development. Recently, the phosphorylation of Hit in 
elongating spermatids has been described [69]. In the same study, which used vitamin A as a 
means to synchronize rat seminiferous epithelia into few stages of spermiogenesis, additional 
bands of H2A.1, H2A.2 and TH2A were observed and were interpreted as postsynthetic 
modifications. A complex pattern of phosphorylation of the H2A.X subtype has been observed in 
murine testicular cells [45]. Another type of histone modification is the conjugation with 
ubiquitin. This has been described for H2A histones during rooster spermatogenesis [ 1 ]. 

The most impressive modification of histones during spermatogenesis is their 
hyperacetylation. This modification of the H4 histone structure is correlated with a broad 
spectrum of cellular processes, including transcriptional control and chromatin assembly (for 
review, see [95]). H4 hyperacetylation occurs in elongating spermatids [47, 48, 68]. This is the 
stage when displacement of histones by transition proteins begins [69, 73]. Thus, the association 
of highly acetylated H4 with the stage of histone displacement in rat spermatids is in agreement 
with the idea that reducing the positive charge of specific lysine residues may help to displace 
histones from chromatin during spermiogenesis. 

Regulation of testicular histone gene expression 

The location of spermatogenesis related histone genes within clusters of somatic histone 
subtype genes implies that control steps discriminate between the different member genes of the 
gene cluster. This control may take place at the transcriptional level, but also posttranscriptionally, 
i.e. during processing of the primary transcript or by influencing the stability of specific histone 
mRNAs (for review, see [74]). At the transcriptional level, promoter structures of specific histone 
genes may contain sequence motifs where interaction with germ cell-specific transcription factors 
controls the specific expression of the respective genes. 
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The mechanism of HI histone gene regulation in somatic cells is not yet fully understood. 
Sequence analysis of HI gene promoters in all vertebrate systems studied revealed that the 
heptanucleotide A A AC AC A is conserved at a position 100 nucleotides upstream of the 
transcription start site [25, 27, 281. Functional studies indicated the involvement of this HI-box in 
the S-phase-dependent expression of HI genes [27, 28, 61], but variants of this sequence motif 
have been observed [38]. A second sequence element, which is involved in the regulation of HI 
genes, is the CCAAT box, which is the binding site for an Hl-specific regulatory factor [41], The 
sequence analysis of the rat, human and murine Hit promoters revealed that their sequences 
contained all main features of S-phase-dependent HI genes: TATA-box, GC-rich element, 
CCAAT-motif and Hl-box [22, 34, 35, 50, 51]. Thus, the known regulatory elements within 
Hit promoter structures apparently do not reflect the fact that the Hit gene is not transcribed 
during DNA replication, but at the pachytene stage of the meiotic prophase. GRIMES and 
coworkers [50, 51] searched for a testis-specific element and defined the palindromic 
hexanucleotide CCTAGG, which is located between the GC-rich element and the CCAAT-box of 
the rat Hit promoter as the testis-specific promoter element [50, 51]. This element was identified 
as the site of interaction of testis-specific DNA-binding proteins at the promoter in pachytene 
spermatocytes [51]. Further support for a functional role of this sequence element may be derived 
from the human Hit promoter, where this sequence motif is conserved at the same site [32, 34], 
The palindromic arrangement, however, may not be mandatory, since the mouse Hit promoter 
shows a varied element, CCTGGG, at the same location [35]. 

The rat TH2A and TH2B genes are grouped together, and they are divergently transcribed 
from a joint promoter region of about 240 nucleotides in between the two genes [56-58], In both 
directions, TATA- and CCAAT-boxes are located upstream of the two genes. In addition, the 
TH2B gene promoter contains the OctI element ATTTGCAT, which is a characteristic regulatory 
element in all H2B gene promoters [40] but also in control regions of several other genes. For 
example, variant Oct factors binding to such elements have been detected during mouse 
embryogenesis and are specifically expressed in germline cells [81]. In conclusion, the promoter 
arrangement of the TH2B gene does not vary from consensus H2B promoter structures and it 
does not reflect the replication-independent, testis-specific expression of this histone gene. 
Functional studies with the TH2B promoter in fibroblast cells revealed that the CCAAT- and 
octamer elements of this promoter are involved in the S-phase dependent expression of the TH2B 
gene when transfected into these somatic cells [56-58]. Subsequent studies showed that 
differential methylation at specific sites of the TH2B promoter contributes to the tissue-specific 
transcription of this TH2B gene [20] and that a repressor protein specific for the rat TH2B gene 
was present during early stages of spermatogenesis [63]. 

The gene coding for TH3, which has been described as a testis-specific H3 subtype in rat 
spermatogonia [91], has not yet been detected. Thus, no data on cell specific regulation of 
testicular H3 histones exist. As mentioned above, GRIMES et al. [49] have shown that an H4 gene 
is closely associated with the rat Hit gene. SI nuclease analysis has shown that this particular H4 
gene is transcribed in the testis predominantly during the pachytene stage, but it is also expressed 
in a tumor cell line. This is in contrast to the neighbouring Hit gene, which is solely transcribed 
in pachytene spermatocytes [50, 94], 

The control of histone gene expression is not restricted to transcriptional regulation (for 
review, see [74]). Processing of the primary transcript and mRNA stability of replication 
dependent histone gene products depend on the presence of a dyad symmetry element at the 3’ 
end of the mRNA, which is not polyadenylated [8, 82], The only exceptions from this rule are the 
S phase-independent replacement histone variants, such as Hlo, H3.3, H2A.Z or H2A X which 
are all encoded by polyadenylated histone mRNAs. Remarkably, the Hit genes of rat, mouse and 

m£xAhow the same dyad symmetry elements as replication dependent histone genes and the 
mRNAs are non polyadenylated. 

Source: 
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Posttranscriptional regulation of testicular histone gene expression 

As mentioned above, main type, S phase-dependent histone mRNAs in somatic cells are 
poly(A)- in contrast to the mRNAs encoding the replacement histone subtype mRNAs. In addition 
to these specific subtype mRNAs, polyadenylated testicular histone mRNAs have been described 
[39], These are at least in part derived from genes which are transcribed to poly(A)--mRNA in 
somatic cells. A poly(A)+ histone H2B mRNA with an extended reading frame and a consensus 
AAUAAA  polyadenylation signal has been detected in mouse spermatids [70]. Recently, a 
polyadenylated H2A gene transcript was found in murine round spermatids. In this case, the 
poly(A) tail was not preceded by the somatic AAUAAA  signal sequence [71]. In a detailed 
analysis of histone mRNAs in chicken spermatids, CHALLONER et al. [19] detected an H2B 
mRNA subpopulation, which was polyadenylated despite the fact that the histone mRNA was 
derived from a gene which is transcribed as a poly(A)--mRNA in somatic cells. The transcript 
from this same gene was elongated by 26 or 28 nucleotides beyond the histone mRNA consensus 
termination site, and a poly(A) tail was added to this elongated mRNA. 

A major step in histone gene regulation is the control of mRNA degradation [74], This has 
not been specifically studied in testicular histone gene expression, but the addition of poly(A) tails 
to part of the histone mRNA population during spermatogenesis suggests that it is a means to 
increase the stability of this mRNA, which is either synthesized at post-meiotic stages or is 
synthesized at early spermatogenesis and is preserved for later stages of development, when a 
certain pool of mRNAs for histone replacement may be needed. 

Conclusions 

Modulation of the chromatin structure during spermatogenesis requires changed patterns of 
histone proteins and histone modifications which contribute to restructuring of chromatin and to 
the transition towards the inactivation of the genome in generating the condensed genome of 
mature sperm. Specific histone subtypes, which differ from their somatic counterparts have been 
described for all histone classes except H4. The most drastic changes in histone gene expression 
and chromatin restructuring occur during the meiotic prophase, when specific subtypes of HI, 
H2A and H2B, i.e. Hit, TH2A and TH2B, are synthesized. These testis specific isoforms remain 
associated with the chromatin of cells during the haploid stages of sperm cell differentiation. At 
this spermiogenesis period, remodelling of chromatin before the final deposition of protamines 
may require a specific chromatin structure which is accessible for regulatory factors such as non¬ 
histone proteins and for transition proteins replacing the histone moiety. This specific chromatin 
structure may be established by specific subsets of core and linker histones and by their 
posttranslational modification. 
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